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Abstract

This paper analyses the flow and heat transfer characteristics of laminar free convection in the boundary layer flow of micropolar
fluids about a line heat source embedded on the edge of a plate. The nonlinear formulation governing equations are initially cast into
dimensionless form by a local non-similar transformation and the resulting system of equations is then solved by the cubic spline col-
location method and the finite difference scheme. Of particular interest are the effects of the micropolar parameter, D, and the Prandtl
number on the velocity and temperature fields and on the skin friction coefficient, wall couple stress, and wall temperature. Numerical
results are obtained for the velocity and temperature profiles for different values of the Prandtl number and micropolar parameter.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of natural convection flow around a concen-
trated heat source has been studied extensively by many
investigators since this problem is of fundamental interest
in many practical technological applications. Line heat
sources are frequently used in a variety of applications,
including in geophysical flows, the cooling of electronic cir-
cuitry, hot-wire anemometry, and heat treatment processing.

Early experimental studies performed by Schorr [1], Hie-
ber and Nash [2], and Yosinobu et al. [3] obtained results
for laminar free convection around a horizontal line heat
source. Later, Gebhar et al. [4] and Fujii et al. [5] investi-
gated the natural convection plumes occurring above a
horizontal line heat source via numerical computations of
similarity solutions. Similarly, Jaluria and Gebhar [6] also
used similarity solutions to solve the flow caused by a line
heat source at the edge of a wall. Their results indicated
that the wall temperature decays along the vertical distance
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above the heat source. The vertical wall plume generated
by a line heat source embedded on the leading edge of an
adiabatic vertical plate has been studied extensively by
Sparrow et al. [7] and Afzal [8]. Rao et al. [9] and Lin
and Chen [10] used numerical methods to analyze the
mixed convection wall plumes formed between the forced
convection limit and the free convection limit of fluids.

An analysis of inclined and horizontal wall plumes has
been conducted by Lin et al. [11] using both theoretical
and experimental methods. Higuera and Weidman [12]
considered the interaction between the plume and various
surfaces and derived the corresponding formulation mod-
els. Recently, the problem of transient natural convection
in liquid nitrogen around a heated wire has been solved
experimentally and numerically by Duluc et al. [13]. Dias
Jr. and Milanez [14] adopted two- and three-dimensional
formulations to study the flow over a heat source mounted
flush on a vertical adiabatic surface. Their results estab-
lished the existence of a transition between the two- and
three-dimensional plumes.

The investigations cited above all considered the fluid to
be Newtonian. However, in practice, many of the fluids
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Fig. 1. Physical model and coordinate system.
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involved in technical processes and engineering applications
exhibit non-Newtonian behavior. Consequently, it is neces-
sary to extend the analysis of natural convection plumes to
the case of non-Newtonian fluids. The theory of micropolar
fluids was first developed by Eringen [15] and has been
applied to the investigation of various fluids. This theory
takes the microscopic effects arising from the local structure
and micro-motions of the fluid elements into account and
provides the basis for a mathematical model for non-Newto-
nian fluids which can be used to analyze the behavior of exo-
tic lubricants, polymers, liquid crystals, animal bloods, and
colloidal or suspension solutions, etc. Eringen [16] later
extended this theory to the investigation of thermo-micro-
polar fluids by taking thermal effects into account. A com-
prehensive review of micropolar fluids theory and the
application of micropolar fluid mechanics has been pre-
sented by Ariman et al. [17]. Ahmadi [18] obtained a similar-
ity solution for the micropolar boundary layer flow over a
semi-infinite plate. The problem of free convection heat
transfer in the boundary layer flow along a vertical or hori-
zontal surface submerged in a micropolar fluid has been
extensively studied by a number of investigators [19–22].

A review of the published literature reveals that the prob-
lem of laminar natural convection wall plumes in a micro-
polar fluid has yet to be reported. However, this problem
is of great significance in many industrial and theoretical
applications, and therefore merits thorough investigation.
Consequently, the present study applies the cubic spline col-
location method and the finite difference approximation
scheme to investigate the nonlinear system of this particular
problem. The effects of the micropolar parameter, the Pra-
ndtl number, and the heat characteristics are considered.
Additionally, a comparison is performed between the pres-
ent results for the wall temperature and wall friction and the
numerical results presented previously [10] for the pure free
convection of a Newtonian fluid wall plume. It is shown
that the two sets of results are in good agreement.

2. Mathematical formulation

Consider the steady laminar natural convection of a
micropolar fluid flow over a vertical plate with a line heat
source embedded in its leading edge, constantly generating
heat at a rate of Q. The corresponding physical model and
coordinate system are shown in Fig. 1. The x-coordinate is
measured along the wall and the y-coordinate is measured
normally from the wall. The gravitational acceleration, g,
acts in the downward direction. Other than the density var-
iation, the remaining fluid properties are assumed to be
constant. It is noted that the temperature difference
between the body surface and the surrounding micropolar
fluid causes a buoyancy force which results in an upward
convective flow. The viscous dissipation is considered to
be negligible.

By employing laminar boundary layer flow assumptions
and the Boussinesq approximation, the governing conser-
vation equations for the micropolar fluid can be written as
For continuity,

ou
ox
þ ov
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¼ 0. ð1Þ

For momentum,
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For energy,
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In these equations, u and v are the velocity components
along the x- and y-directions, respectively, q, m, a, and b
are the density, kinematic viscosity, thermal diffusivity,
and thermal expansion coefficient of the fluid, respectively,
and j, j, and c are the vortex viscosity, micro-inertia den-
sity, and spin-gradient viscosity of the fluid, respectively.
Finally, T is the fluid temperature and N is the component
of micro-rotation whose direction of rotation lies in the
(x–y) plane.

The boundary conditions are given by the following:

y ¼ 0 : u ¼ 0; v ¼ 0; N ¼ � 1

2

ou
oy
;

oT
oy
¼ 0; ð5aÞ

y !1 : u ¼ 0; N ¼ 0; T ¼ T1: ð5bÞ

In general, the boundary condition given in (5a) for N at the
plate, i.e. y = 0, may express N = � n(ou/oy). The physical
interpretation is that there is a strong concentration of
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micro-elements in the vicinity of boundary for n = 0, a tur-
bulent boundary layer for n = 1, and a weak concentration
at the wall for n = 1/2 as suggested by Ahmadi [18] and
Gorla and Ameri [20] indicates that the micro-rotation is
equal to one half of the fluid vorticity at the boundary. In
this paper, we have limited to the case of n = 1/2 only.

In addition, the convective energy carried by the bound-
ary layer flow is equal to the energy released by the line
heat source. Therefore, it follows that:

Q ¼ qCpL
Z 1

0

uðT � T1Þdy ð6Þ

where Cp and L are the specific heat of the fluid and the
length of the line heat source, respectively.

To facilitate the solution of the current problem, this
paper introduces the pseudo similarity variables n and g,
the reduced stream function F(n,g), the dimensionless
micro-rotation G(n,g), and the dimensionless temperature,
i.e.

n ¼ x
L
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Gr1=5; F ðn; gÞ ¼ 1
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u;

Gðn; gÞ ¼ L2n1=5

mGr3=5
N ; hðn; gÞ ¼ T � T1

T �
Gr1=5n3=5;

ð7Þ

where Gr is the Grashof number, i.e.

Gr ¼ gbT �L3=m2 ð8Þ
and T* is the characteristic temperature of the line heat
source, i.e.

T � ¼ Q
qCpmL

. ð9Þ

The stream function, u, satisfies the continuity equation
given in Eq. (1) automatically with

u ¼ ou
oy
; v ¼ � ou

ox
. ð10Þ

Substituting Eq. (7) into the governing equation (2)–(4)
and (6), respectively, leads to
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In the equations above, the primes indicate partial differ-
entiation with respect to g alone and Pr = m/a is the Prandtl
number. Meanwhile, the dimensionless parameters D, B,
and k characterize the vortex viscosity, the micro-inertia
density, and the spin-gradient viscosity, respectively, and
are defined as

D ¼ j
l
; B ¼ L2

jGr2=5
; k ¼ c

jqm
.

Following transformation, the corresponding boundary
conditions, Eqs. (5a) and (5b), become

At g = 0:

F 0ðn; 0Þ ¼ 0; F ðn; 0Þ ¼ � 5

3
n
oF
on

����
g¼0

;

Gðn; 0Þ ¼ � 1

2
F 00ðn; 0Þ; h0ðn; 0Þ ¼ 0. ð15aÞ

At y!1:

F 0ðn;1Þ ¼ Gðn;1Þ ¼ hðn;1Þ ¼ 0. ð15bÞ
It is noted that for the limiting case of D = 0, the fluid

becomes a Newtonian fluid, and Eqs. (11) and (13), which
govern the micropolar fluid flow, reduce to the pure free
convection case of [10]. In this case, Eq. (12) has no signif-
icance and can be omitted.

In the natural convection flow of micropolar fluids, the
physical quantities of principal interest are the wall temper-
ature distribution, h(n, 0), the skin friction coefficient, Cf,
the dimensionless wall couple stress, Mw, the velocity dis-
tribution, F 0, and the micro-rotation distribution, G. The
first three quantities are defined, respectively, by

T w � T1
T �

Gr1=5 ¼ n�3=5hðn; 0Þ; ð16Þ

Cf ¼
2sw

qU 2
�
; ð17Þ
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qU 2
�L
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where U* = mGr2/5n1/5/L is the characteristic velocity.
With the aid of Eq. (7), together with a definition of the

wall shear stress as sw ¼ ½ðlþ jÞ ou
oy þ jN �y¼0, and the wall

couple stress as mw ¼ c oN
oy

��
y¼0

, it can be shown that
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2

� �
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B
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2.1. Numerical procedure

To solve the current problem, the system of nonlinear
equations given in Eqs. (11)–(14) and the associated
boundary conditions in Eq. (15) must be solved simulta-
neously due to the coupled nature of the system. The solu-
tion of the system of steady equations has been obtained
previously using a pseudo-transient formulation approach
in which a false transient term was introduced into each
equation [23,24]. The present study solves the coupled non-
linear partial differential equations using the cubic spline
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collocation method [23–26] together with a finite difference
approximation. The principal advantages of using the
cubic spline collocation technique are reported in [23,26]
and are not repeated here.

Using the false transient technique, Eqs. (11)–(13) can
be expressed in discretized form as
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In the above, Ds = sn+1 � sn represents the false time step,
the subscript u indicates oF/og, and the superscript n

denotes the iteration order.
Following rearrangement, Eqs. (21)–(23) can be

expressed in the following spline approximation form:

/nþ1
i;j ¼ Qi;j þ Ri;jl
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; ð25Þ

where / represents the functions u, G, and h. The quantities
Qi,j, Ri,j, and Si,j, are known coefficients, calculated at pre-
vious time steps (Table 1).

In the present analysis, the cubic spline collocation
method is used to generate an algorithm resulting in a sin-
gle tridiagonal system containing either the function values
at the grid points, the first derivatives, or the second deriv-
Table 1
Coefficients of Eq. (25)
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atives only. Using the cubic spline relations described by
Rubin and Khosla [25], Eq. (25) at the n + 1th iteration
can be written in the following tridiagonal form:

ai;j/
nþ1
i;j�1 þ bi;j/

nþ1
i;j þ ci;j/

nþ1
i;jþ1 ¼ di;j; ð26Þ

where / represents the function (u, G, and h) and its first
and second order derivatives. Therefore, Eq. (26) can be
readily solved by using the Thomas algorithm.

The present computational procedure commences by
solving the energy equation, which provides the tempera-
ture field necessary for the solution of the reduced stream
function equation. Solution of the transformed angular
momentum equation for G then completes the procedure.
This computation cycle is repeated until convergence is
obtained. The criterion applied when assessing the conver-
gence of the solutions is that the maximum relative change
in all of the dependent variables should satisfy:

j/nþ1
i;j � /n

i;jjmax

j/n
i;jjmax

< 1� 10�7. ð27Þ
3. Results and discussion

In the present study, which aims to develop an under-
standing of the flow and heat transfer characteristics in
micropolar fluid flows about a wall plume, the various
numerical computations were all performed using
B = 1 · 106 and k = 5.0. The remaining parameters were
specified within the following ranges: micropolar parame-
ter D = 0–20.0; Prandtl number Pr = 0.73–20.0.

To assess the accuracy of the cubic spline collocation
method, the present results were compared with the
published data [10] relating to the natural convection of
Newtonian fluids (i.e. D = B = k = 0). For different values
of Pr, the current results for the dimensionless wall temper-
ature, h(n, 0), and the dimensionless wall friction coeffi-
cient, F00(n, 0), were found to be in good agreement with
those of [10], as shown in Table 2.

Representative velocity profiles for various values of D
are illustrated in Fig. 2, which plots F 0 against g for
Pr = 9.0 and 0.73, respectively. It can be seen that an
increase in the micropolar parameter, D, causes a reduction
in the maximum velocity ðF 0maxÞ in the boundary layer.
Additionally, it is observed that the larger the value of
D,the thicker the momentum boundary layer. This observa-
tion is reasonable since an increase in D will increase the
concentration of micro-elements near the boundary and
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Table 2
Comparison of local wall temperature and skin friction coefficient

Pr h(n, 0) F00(n,0)

Lin and
Chen [10]

Present
results

Lin and
Chen [10]

Present
results

0.001 0.79334 0.79487 52.114 52.301
0.01 0.79202 0.79254 15.585 15.597
0.1 0.77996 0.78018 4.5362 4.5375
0.7 0.73450 0.73446 1.8562 1.8563
7.0 0.65331 0.65256 1.2033 1.2035
100 0.60188 0.60207 1.1602 1.1608
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Fig. 2. Velocity profiles for selected values of D for Pr = 9.0, 0.73 and
n = 0.3.
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will consequently cause the momentum boundary layer to
become thicker.

Fig. 3 shows representative dimensionless temperature
profiles for different values of D. An inspection of these
profiles reveals that as the micropolar parameter, D,
increases, both the temperature and the thermal boundary
layer thickness increase. These trends are again attributed
to the fact that a larger value of D leads to a higher concen-
tration of micro-elements near the boundary.

The results of Table 3 demonstrate the effect of the
micropolar parameter, D, on the skin friction parameter,
0.0 0.8 1.5 2.3 3.0
η

0.0

1.0
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4.0

Pr = 9.0, ξ = 0.3
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0.0 (Newtonian fluid)

(a)

(b)

Fig. 3. Temperature profiles for selected values of D for Pr = 9.0 and
n = 0.3.



Table 3
Effect of variation of D on skin friction parameter F00(n, 0), local wall
temperature h(n, 0) and wall couple stress G 0(n, 0) at wall surface,
respectively, for Pr = 0.73, k = 5.0, B = 1 · 106, and n = 0.1

D F00(n, 0) h(n, 0) G 0(n,0)

0.0 1.02335 0.72107 –
0.5 0.86215 0.72316 0.27173
1.0 0.78320 0.72882 0.23421
2.0 0.66800 0.74169 0.18321
5.0 0.49453 0.77316 0.11588
10.0 0.37757 0.81893 0.07853
20.0 0.28633 0.87994 0.05346

Table 4
Effect of variation of Pr on local friction parameter F00(n, 0), local wall
temperature h(n, 0) and wall couple stress G 0(n, 0) at wall surface,
respectively, for D = 1.0, k = 5.0, B = 1 · 106, and n = 0.1

Pr F00(n, 0) h(n, 0) G 0(n,0)

0.01 0.30969 0.12576 0.04145
0.1 0.52864 0.31643 0.10342
0.73 0.78320 0.72882 0.23421
2.0 0.94821 1.17201 0.36236
9.0 1.28940 2.57325 0.75557
20.0 1.51086 4.00139 1.12418
90.0 2.06119 9.50491 2.58525
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F00(n, 0), the dimensionless wall temperature, h(n, 0), and the
dimensionless wall couple stress, G 0(n, 0). It is observed that
the skin friction parameter and the wall couple stress both
decrease as D increases. This is because the boundary layer
thicknesses of the momentum, thermal and angular veloc-
ity become thicker as the micropolar parameter D
increases. The numerical results also indicate that the influ-
ence of vortex viscosity leads to the micropolar fluid
(D 5 0) having a lower skin friction parameter and surface
heat transfer rate than a Newtonian fluid D = 0 under the
same conditions.

Table 4 shows the effect of the Prandtl number, Pr, on
the skin friction parameter, F00(n, 0), the wall temperature,
h(n, 0), and the dimensionless wall couple stress, G 0(n, 0).
It is obvious that an increase in the Prandtl number causes
a corresponding increase in the skin friction parameter, the
wall temperature, and the wall couple stress.

4. Conclusions

This study has investigated the wall plume associated
with natural convection flow in micropolar fluids. The
numerical results for the transformed boundary layer equa-
tions with appropriate boundary conditions have been
obtained using the cubic spline collocation method. The
principal findings of this study can be summarized as
follows:
(1) An increase in the micropolar parameter, D, causes a
reduction in the maximum velocity ðF 0maxÞ in the
boundary layer and shifts the position of maximum
velocity away from the surface. Meanwhile, the
temperature in the boundary layer increases. Further-
more, higher values of D cause the thicknesses of the
momentum and thermal boundary layers to increase.

(2) Both the skin friction parameter and the wall couple
stress increase with increasing micropolar parameter,
D. However, the local wall temperature decreases
with increasing D.

(3) The micropolar parameter, D, has a significant influ-
ence on the velocity and temperature fields, and
reduces the skin friction factor while increasing the
local wall temperature compared to the case of
Newtonian fluids (D = 0).

(4) An increase in the Prandtl number, Pr, causes a cor-
responding increase in the skin friction parameter,
the local wall temperature, and the wall couple stress.
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